

DPP No. 14

Total Marks : 34

Max. Time : 36 min.

Topics : Rigid Body Dynamics, Geometrical Optics, Simple Harmonic Motion, Work, Power and Energy, Electrostatics, Fluid

Type of Questions		M.M., Min.
Single choice Objective ('–1' negative marking) Q.1 to Q.4	(3 marks, 3 min.)	[12, 12]
Multiple choice objective ('–1' negative marking) Q.5 to Q.6	(4 marks, 4 min.)	[8, 8]
Subjective Questions ('–1' negative marking) Q.7 to Q.8	(4 marks, 5 min.)	[8, 10]
Comprehension ('-1' negative marking) Q.9 to Q.10	(3 marks, 3 min.)	[6, 6]

1. A circular platform is mounted on a frictionless vertical axle. Its radius R = 2m and its moment of inertia about the axle is 200 kgm². it is initially at rest. A 50 kg man stands on the edge of the platform and begins to walk along the edge at the speed of $1ms^{-1}$ relative to the ground. Time taken by the man to complete one revolution with respect to disc is :

(A)
$$\pi s$$
 (B) $\frac{3\pi}{2}s$ (C) $2\pi s$ (D) $\frac{\pi}{2}s$

2. For the angle of minimum deviation of a prism to be equal to its refracting angle, the prism must be made of a material whose refractive index :

A) lies between $\sqrt{2}$ and 1	(B) lies between 2 and $\sqrt{2}$
C) is less than 1	(D) is greater than 2

The potential energy of a particle executing SHM changes from maximum to minimum in 5 s. Then the time period of SHM is :
 (A) 5 s
 (B) 10 s
 (C) 15 s
 (D) 20 s

4. A force $\vec{F} = (3\hat{i} + 4\hat{j})N$ acts on a 2 kg movable object that moves from an initial position $\vec{d}_i = (-3\hat{i} - 2\hat{j})M$ to a final position $\vec{d}_f = (5\hat{i} + 4\hat{j})M$ in 6 s. The average power delivered by the force during the interval is equal to :

- (A) 8 watt (B) $\frac{50}{6}$ watt (C) 15 watt (D) $\frac{50}{3}$ watt.
- **5.** Two blocks A (5kg) and B(2kg) attached to the ends of a spring constant 1120N/m are placed on a smooth horizontal plane with the spring undeformed. Simultaneously velocities of 3m/s and 10m/s along the line of the spring in the same direction are imparted to A and B then

- (A) when the extension of the spring is maximum the velocities of A and B are zero.
- (B) the maximum extension of the spring is 25cm.
- (C) the first maximum compression occurs $3\pi\!/56$ seconds after start.
- (D) maximum extension and maximum compression occur alternately.
- 6. Two free point charges +q and +4q are placed a distance x apart. A third charge is so placed that all the three charges are in equilibrium. Then

CLICK HERE

- (A) unknown charge is -4q/9
- (B) unknown charge is -9q/4
- (C) It should be at (x/3) from smaller charge between them
- (D) It should be placed at (2x/3) from smaller charge between them.

Get More Learning Materials Here : 📕

- 7. A fixed container of height 'H' with large cross-sectional area 'A' is completely filled with water. Two small orifice of cross-sectional area 'a' are made, one at the bottom and the other on the vertical side of the container at a distance H/2 from the top of the container. Find the time taken by the water level to reach a height of H/2 from the bottom of the container.
- 8. A standing wave pattern of maximum amplitude 2mm is obtained in a string whose shape at t = 0 is represented in the graph. If the speed of the travelling wave in the string is 5 cm/s then find the component waves.

COMPREHENSION

Consider the situation in figure. The bottom of the pot is a reflecting plane mirror, S is a small fish and T is a human eye. Refractive index of water is 4/3.

- 9.At what distance from itself will the fish see the image of the eye in upward direction?
(A) 35 cm(B) 45 cm(C) 55 cm(D) 110 cm
- 10.At what distance from itself will the fish see the image of the eye in downward direction?(A) 90 cm(B) 110 cm(C) 170 cm(D) 180 cm

Get More Learning Materials Here : 📕

Answers Key

1.	(C)	2. (B)	3. (D)	4.	(A)	
5.	(B), (C)	, (D)		6. (A), (C)			
7.	$t = \frac{2A}{3a}$	$\left(\sqrt{2}\right)$ –	$-1\left(\sqrt{\frac{H}{g}}\right)$	 				
8.	$\sin\left(\frac{\pi}{2}\right)$	$x+\frac{3\pi}{4}$	$+\frac{5\pi}{2}$ t) + s	in $\left(\frac{\pi}{2}x\right)$	$1+\frac{3\pi}{4}$	$\frac{\pi}{2} - \frac{5\pi}{2}$	t
9.	(D)	10. (C)					

Hints & Solutions

 $\begin{array}{ll} \underline{\mathbf{1.}} & \text{using angular momentum conservation} \\ L_i &= 0 \\ L_t &= mvR - I\omega \\ mvR &= I.\omega \\ \omega &= \left(\frac{1}{2}\right) & (v + \omega R)t = 2\pi R \end{array}$

$$\left(1+\frac{1}{2}\times2\right)=2\pi\times2$$
 t = 2π sec.

2.
$$\delta_{\min} = i + e - A$$

 $\delta_{\min} = A$ then
 $2A = i + e$ in case of δ_{\min} $i = e$
 $2A = 2i$ $r_1 = r_2 = \frac{A}{2}$
 $i = A = 90^{\circ}$
then 1 sin i = n sin r_1
sin A = n sin $\frac{A}{2}$
 $2 sin \frac{A}{2} cos \frac{A}{2} = n sin \frac{A}{2}$
 $2 cos \frac{A}{2} = n$
when $A = 90^{\circ} = i_{max}$
then $n_{min} = \sqrt{2}$
 $i = A = 0$ $n_{max} = 2$

Get More Learning Materials Here :

 P.E. is maximum at extreme position and minimum at mean position. Time to go from extreme position to mean position

is, t =
$$\frac{T}{4}$$
; where T is time period of SHM
5 s = $\frac{T}{4}$
 \Rightarrow T = 20 s.

4.
$$\vec{d} = \vec{d}_f - \vec{d}_i = 8\hat{i} + 6\hat{j}$$

 $W = \vec{F}.\vec{d} = 24 + 24 = 48$
 $P_{av} = \frac{W}{t} = 8$ Watt

5. At max. extension both should move with equal velocity.

J

$$\frac{1}{2}5 \times 3^2 + \frac{1}{2} \times 2 \times 10^2 = \frac{1}{2}(5+2)V^2 + \frac{1}{2}kx^2$$

Put V and k

$$\therefore \quad x_{max} = \frac{1}{4}m = 25 \text{ cm}.$$

Also first maximum compression occurs at ;

$$t = \frac{3T}{4} = \frac{3}{4} 2\pi \sqrt{\frac{\mu}{k}}$$
$$= \frac{3}{4} 2\pi \sqrt{\frac{10}{7 \times 1120}} = \frac{3\pi}{56} \text{ sec.}$$

(where $\mu \Rightarrow$ reduced mass, $\mu = \frac{m_1 m_2}{m_1 + m_2}$)

6.
$$A \xrightarrow{q} Q \xrightarrow{4q} A \xrightarrow{q} A \xrightarrow$$

4

For equilibrium of all the changes net force on each charge should be zero.

$$\Rightarrow \frac{KqQ}{d^2} - \frac{4KqQ}{(x-d)^2} = 0 \text{ (Net force on Q)}$$

$$\Rightarrow d = x/3$$

& $\frac{KqQ}{d^2} + \frac{4Kq^2}{x^2} = 0 \text{ (Net force on A)}$

Х

Get More Learning Materials Here : 📕

7.
$$H_{2} = \sqrt{2g (h - H/2)}$$

$$v_{1} = \sqrt{2g (h - H/2)}$$

$$v_{2} = \sqrt{2g h}$$

$$\therefore By \text{ continuity equation}$$

$$A\left(-\frac{dh}{dt}\right) = a (v_{1} + v_{2})$$

$$\Rightarrow A\left(-\frac{dh}{dt}\right) = a \left\{\sqrt{2g (h - H/2)} + \sqrt{2g h}\right\}$$

$$or - \frac{A}{a\sqrt{2g}} \int_{H}^{H/2} \frac{dh}{\sqrt{h} + \sqrt{h} - H/2} = \int_{0}^{t} dt$$

$$\Rightarrow t = \frac{2A}{3a} (\sqrt{2} - 1) \sqrt{\frac{H}{g}} \quad \text{Ans.}$$

8. Equation of standing wave can be written as $Y = 2 \sin (kx + \theta) \cos \omega t$ because the particles at t = 0 are at extreme position.

$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{4} = \frac{\pi}{2}$$

From the graph it is clear that $x = \frac{1}{2}$,

Amplitude = 0

$$\therefore \quad 2\sin\left[\frac{\pi}{2}\cdot\frac{1}{2}+\theta\right] = 0 \Rightarrow \frac{\pi}{4}+\theta = 0 \text{ or } \pi.$$

we will select $\frac{\pi}{4} + \theta = \pi$ to suit the initial condition

 $\therefore \quad \theta = \frac{3\pi}{4}$ $\therefore \quad y = 2 \sin\left(\frac{\pi}{2}x + \frac{3\pi}{4}\right) \ \cos\frac{5\pi}{2}t$ $= \sin\left(\frac{\pi}{2}x + \frac{3\pi}{4} + \frac{5\pi}{2}t\right)$ $+ \sin\left(\frac{\pi}{2}x + \frac{3\pi}{4} - \frac{5\pi}{2}t\right)$

Get More Learning Materials Here :

🕀 www.studentbro.in

9. Distance of image of eye from fish in upward direction

$$d = \frac{d}{n_{rel}} + 30 = \frac{60}{\left(\frac{1}{\frac{4}{3}}\right)} = 60 \times \frac{4}{3} + 30$$

= 110 cm

10. Distance of first image of eye from the refraction at water surface

$$v = \frac{60}{\begin{pmatrix} 1\\ \frac{4}{\sqrt{3}} \end{pmatrix}} = 80$$

Distance of image of eye from mirror due to refraction = 80 + 60 = 140Distance of second image in downward direction from mirror = 140 cm Distance of second image from fish in downward direction = 140 + 30 = 170 cm

Get More Learning Materials Here :

